• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Finance Train

Finance Train

High Quality tutorials for finance, risk, data science

  • Home
  • Data Science
  • CFA® Exam
  • PRM Exam
  • Tutorials
  • Careers
  • Products
  • Login

Supervised Learning Models

Data Science

This lesson is part 9 of 22 in the course Machine Learning in Finance Using Python

As we pointed out earlier, both classification and regression models are in the field of Supervised Learning. These models are characterized by having a group of features or independent variables and a target variable that is the variable that the model aims to predict. 

This target variable is called the labelled data and is the main property of the Supervised Learning models because it acts as the orientation for constructing the model in the training phase and to evaluate model performance.  

In a classification problem the target variable to predict (y) is a categorical variable and can take a finite set of possible choices, K. On the other hand, in the regression problem, the target variable y is a real value rather than categorical.

The classification problem has the goal of estimating membership for a set of features into a particular group. A common classification problem in the financial sector is to determine the price direction for the next day based on N days of asset price history.

The regression problem involves estimate a real value response with a set of features or predictors as the independent variables. In the financial field, an example is to estimate tomorrows asset price based on the historical prices (or other features) of the price. The regression problem would estimate the real value of the price and not just its direction.

Common classification algorithms include Logistic Regression, Naïve Bayes Classifiers, Support Vector Machines, Decision Tree, and Deep Convolution Neural Networks. Common regression techniques include Linear Regression, Support Vector Regression and Random Forest.

In the next lessons, we will explain relevant concepts of the most popular algorithms used for Supervised Learning. These algorithms are the following:

  • Multiple Linear Regression
  • Logistic Regression
  • Decision Tree-Random Forest
  • Support Vector Machine
  • Linear Discriminant Analysis
Previous Lesson

‹ Bias Variance Trade Off

Next Lesson

Multiple Linear Regression ›

Join Our Facebook Group - Finance, Risk and Data Science

Posts You May Like

How to Improve your Financial Health

CFA® Exam Overview and Guidelines (Updated for 2021)

Changing Themes (Look and Feel) in ggplot2 in R

Coordinates in ggplot2 in R

Facets for ggplot2 Charts in R (Faceting Layer)

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

In this Course

  • Machine Learning with Python
  • What is Machine Learning?
  • Data Preprocessing in Data Science and Machine Learning
  • Feature Selection in Machine Learning
  • Train-Test Datasets in Machine Learning
  • Evaluate Model Performance – Loss Function
  • Model Selection in Machine Learning
  • Bias Variance Trade Off
  • Supervised Learning Models
  • Multiple Linear Regression
  • Logistic Regression
  • Logistic Regression in Python using scikit-learn Package
  • Decision Trees in Machine Learning
  • Random Forest Algorithm in Python
  • Support Vector Machine Algorithm Explained
  • Multivariate Linear Regression in Python with scikit-learn Library
  • Classifier Model in Machine Learning Using Python
  • Cross Validation to Avoid Overfitting in Machine Learning
  • K-Fold Cross Validation Example Using Python scikit-learn
  • Unsupervised Learning Models
  • K-Means Algorithm Python Example
  • Neural Networks Overview

Latest Tutorials

    • Data Visualization with R
    • Derivatives with R
    • Machine Learning in Finance Using Python
    • Credit Risk Modelling in R
    • Quantitative Trading Strategies in R
    • Financial Time Series Analysis in R
    • VaR Mapping
    • Option Valuation
    • Financial Reporting Standards
    • Fraud
Facebook Group

Membership

Unlock full access to Finance Train and see the entire library of member-only content and resources.

Subscribe

Footer

Recent Posts

  • How to Improve your Financial Health
  • CFA® Exam Overview and Guidelines (Updated for 2021)
  • Changing Themes (Look and Feel) in ggplot2 in R
  • Coordinates in ggplot2 in R
  • Facets for ggplot2 Charts in R (Faceting Layer)

Products

  • Level I Authority for CFA® Exam
  • CFA Level I Practice Questions
  • CFA Level I Mock Exam
  • Level II Question Bank for CFA® Exam
  • PRM Exam 1 Practice Question Bank
  • All Products

Quick Links

  • Privacy Policy
  • Contact Us

CFA Institute does not endorse, promote or warrant the accuracy or quality of Finance Train. CFA® and Chartered Financial Analyst® are registered trademarks owned by CFA Institute.

Copyright © 2021 Finance Train. All rights reserved.

  • About Us
  • Privacy Policy
  • Contact Us