- Why Finance?
- Utilities, Endowments, and Equilibrium
- Computing Equilibrium
- Efficiency, Assets, and Time
- Present Value Prices and the Real Rate of Interest
- Irving Fisher's Impatience Theory of Interest
- Shakespeare's Merchant of Venice and Collateral, Present Value and the Vocabulary of Finance
- How a Long-Lived Institution Figures an Annual Budget Yield
- Yield Curve Arbitrage
- Dynamic Present Value
- Financial Implications of US Social Security System
- Overlapping Generations Models of the Economy
- Will the Stock Market Decline when the Baby Boomers Retire?
- Quantifying Uncertainty and Risk
- Uncertainty and the Rational Expectations Hypothesis
- Backward Induction and Optimal Stopping Times
- Callable Bonds and the Mortgage Prepayment Option
- Modeling Mortgage Prepayments and Valuing Mortgages
- Dynamic Hedging
- Dynamic Hedging and Average Life
- Risk Aversion and CAPM
- The Mutual Fund Theorem and Covariance Pricing Theorems
- Risk, Return, and Social Security
- Leverage Cycle and the Subprime Mortgage Crisis
- Shadow Banking: Parallel and Growing?
Risk Aversion and CAPM
Until now we have ignored risk aversion. The Bernoulli brothers were the first to suggest a tractable way of representing risk aversion. They pointed out that an explanation of the St. Petersburg paradox might be that people care about expected utility instead of expected income, where utility is some concave function, such as the logarithm. One of the most famous and important models in financial economics is the Capital Asset Pricing Model, which can be derived from the hypothesis that every agent has a (different) quadratic utility. Much of the modern mutual fund industry is based on the implications of this model. The model describes what happens to prices and asset holdings in general equilibrium when the underlying risks can't be hedged in the aggregate. It turns out that the tools we developed in the beginning of this course provide an answer to this question.
Source: Open Yale Courses
Data Science in Finance: 9-Book Bundle
Master R and Python for financial data science with our comprehensive bundle of 9 ebooks.
What's Included:
- Getting Started with R
- R Programming for Data Science
- Data Visualization with R
- Financial Time Series Analysis with R
- Quantitative Trading Strategies with R
- Derivatives with R
- Credit Risk Modelling With R
- Python for Data Science
- Machine Learning in Finance using Python
Each book includes PDFs, explanations, instructions, data files, and R code for all examples.
Get the Bundle for $29 (Regular $57)Free Guides - Getting Started with R and Python
Enter your name and email address below and we will email you the guides for R programming and Python.