Quantifying Uncertainty and Risk

Until now, the models we've used in this course have focused on the case where everyone can perfectly forecast future economic conditions. Clearly, to understand financial markets, we have to incorporate uncertainty into these models. The first half of this lecture continues reviewing the key statistical concepts that we'll need to be able to think seriously about uncertainty, including expectation, variance, and covariance. We apply these concepts to show how diversification can reduce risk exposure. Next we show how expectations can be iterated through time to rapidly compute conditional expectations: if you think the Yankees have a 60% chance of winning any game against the Dodgers, what are the odds the Yankees will win a seven game series once they are up 2 games to 1? Finally we allow the interest rate, the most important variable in the economy according to Irving Fisher, to be uncertain. We ask whether interest rate uncertainty tends to make a dollar in the distant future more valuable or less valuable.

Source: Open Yale Courses

Data Science in Finance: 9-Book Bundle

Data Science in Finance Book Bundle

Master R and Python for financial data science with our comprehensive bundle of 9 ebooks.

What's Included:

  • Getting Started with R
  • R Programming for Data Science
  • Data Visualization with R
  • Financial Time Series Analysis with R
  • Quantitative Trading Strategies with R
  • Derivatives with R
  • Credit Risk Modelling With R
  • Python for Data Science
  • Machine Learning in Finance using Python

Each book includes PDFs, explanations, instructions, data files, and R code for all examples.

Get the Bundle for $39 (Regular $57)
JOIN 30,000 DATA PROFESSIONALS

Free Guides - Getting Started with R and Python

Enter your name and email address below and we will email you the guides for R programming and Python.

Data Science in Finance: 9-Book Bundle

Data Science in Finance Book Bundle

Master R and Python for financial data science with our comprehensive bundle of 9 ebooks.

What's Included:

  • Getting Started with R
  • R Programming for Data Science
  • Data Visualization with R
  • Financial Time Series Analysis with R
  • Quantitative Trading Strategies with R
  • Derivatives with R
  • Credit Risk Modelling With R
  • Python for Data Science
  • Machine Learning in Finance using Python

Each book comes with PDFs, detailed explanations, step-by-step instructions, data files, and complete downloadable R code for all examples.