Quantifying Uncertainty and Risk

Until now, the models we've used in this course have focused on the case where everyone can perfectly forecast future economic conditions. Clearly, to understand financial markets, we have to incorporate uncertainty into these models. The first half of this lecture continues reviewing the key statistical concepts that we'll need to be able to think seriously about uncertainty, including expectation, variance, and covariance. We apply these concepts to show how diversification can reduce risk exposure. Next we show how expectations can be iterated through time to rapidly compute conditional expectations: if you think the Yankees have a 60% chance of winning any game against the Dodgers, what are the odds the Yankees will win a seven game series once they are up 2 games to 1? Finally we allow the interest rate, the most important variable in the economy according to Irving Fisher, to be uncertain. We ask whether interest rate uncertainty tends to make a dollar in the distant future more valuable or less valuable.

Source: Open Yale Courses

You may find these interesting

Value at Risk (VaR)
### Define the concept of Value-at-Risk (VaR) Value-at- Risk (VaR) is a general measure of risk dev...
Finance Train Premium
Accelerate your finance career with cutting-edge data skills.
Join Finance Train Premium for unlimited access to a growing library of ebooks, projects and code examples covering financial modeling, data analysis, data science, machine learning, algorithmic trading strategies, and more applied to real-world finance scenarios.
I WANT TO JOIN
JOIN 30,000 DATA PROFESSIONALS

Free Guides - Getting Started with R and Python

Enter your name and email address below and we will email you the guides for R programming and Python.

Saylient AI Logo

Accelerate your finance career with cutting-edge data skills.

Join Finance Train Premium for unlimited access to a growing library of ebooks, projects and code examples covering financial modeling, data analysis, data science, machine learning, algorithmic trading strategies, and more applied to real-world finance scenarios.