- Why Finance?
- Utilities, Endowments, and Equilibrium
- Computing Equilibrium
- Efficiency, Assets, and Time
- Present Value Prices and the Real Rate of Interest
- Irving Fisher's Impatience Theory of Interest
- Shakespeare's Merchant of Venice and Collateral, Present Value and the Vocabulary of Finance
- How a Long-Lived Institution Figures an Annual Budget Yield
- Yield Curve Arbitrage
- Dynamic Present Value
- Financial Implications of US Social Security System
- Overlapping Generations Models of the Economy
- Will the Stock Market Decline when the Baby Boomers Retire?
- Quantifying Uncertainty and Risk
- Uncertainty and the Rational Expectations Hypothesis
- Backward Induction and Optimal Stopping Times
- Callable Bonds and the Mortgage Prepayment Option
- Modeling Mortgage Prepayments and Valuing Mortgages
- Dynamic Hedging
- Dynamic Hedging and Average Life
- Risk Aversion and CAPM
- The Mutual Fund Theorem and Covariance Pricing Theorems
- Risk, Return, and Social Security
- Leverage Cycle and the Subprime Mortgage Crisis
- Shadow Banking: Parallel and Growing?
Modeling Mortgage Prepayments and Valuing Mortgages
A mortgage involves making a promise, backing it with collateral, and defining a way to dissolve the promise at prearranged terms in case you want to end it by prepaying. The option to prepay, the refinancing option, makes the mortgage much more complicated than a coupon bond, and therefore something that a hedge fund could make money trading. In this lecture we discuss how to build and calibrate a model to forecast prepayments in order to value mortgages. Old fashioned economists still make non-contingent forecasts, like the recent predictions that unemployment would peak at 8%. A model makes contingent forecasts. The old prepayment models fit a curve to historical data estimating how sensitive aggregate prepayments have been to changes in the interest rate. The modern agent based approach to modeling rationalizes behavior at the individual level and allows heterogeneity among individual types. From either kind of model we see that mortgages are very risky securities, even in the absence of default. This raises the question of how investors and banks should hedge them.
Source: Open Yale Courses
Data Science in Finance: 9-Book Bundle
Master R and Python for financial data science with our comprehensive bundle of 9 ebooks.
What's Included:
- Getting Started with R
- R Programming for Data Science
- Data Visualization with R
- Financial Time Series Analysis with R
- Quantitative Trading Strategies with R
- Derivatives with R
- Credit Risk Modelling With R
- Python for Data Science
- Machine Learning in Finance using Python
Each book includes PDFs, explanations, instructions, data files, and R code for all examples.
Get the Bundle for $39 (Regular $57)Free Guides - Getting Started with R and Python
Enter your name and email address below and we will email you the guides for R programming and Python.