Finance Train LogoFinance Train
BlogMembership
Finance TrainFinance Train
Home
Learn
Getting StartedGetting StartedPythonPythonR ProgrammingR ProgrammingQuantitative FoundationsQuantitative FoundationsData AnalysisData AnalysisMachine LearningMachine LearningAIAIFinance AppsFinance Apps
BlogToolsMembership
CoursesData Manipulation Using Pandas - Part 1
Data Manipulation Using Pandas - Part 1
Premium

Data Manipulation Using Pandas - Part 1

This course offers a comprehensive introduction to Pandas, a key library in Python for data manipulation and analysis. In this course, you'll gain a thorough understanding of how to use Pandas effectively for data science projects. The contents are divided into two parts.

Introduction to Pandas

This section of the course provides a detailed introduction to Pandas, a pivotal library in Python for data analysis. It begins with an overview of Pandas and its significance in the realm of data science, giving you an understanding of why it's a must-have skill for data analysts and scientists.

Key aspects covered include:

  • Introduction to Pandas and Its Role in Data Analysis: Here, you'll learn what Pandas is and why it is an essential tool for data manipulation and analysis.
  • Installing Pandas and Setting Up the Development Environment: This part guides you through the process of installing Pandas and preparing your development environment, ensuring you have the necessary tools for effective learning.
  • Understanding the Basic Data Structures of Pandas: Series and DataFrame: You'll get acquainted with Pandas' fundamental data structures, essential for any data manipulation tasks.
  • Loading and Saving Data Using Pandas: This section covers the practical aspects of how to load data from various sources and how to save your work.
  • Exploring Your Data: It includes basic data exploration techniques and how to generate summary statistics, which are crucial for understanding the datasets you will work with.

Data Manipulation with Pandas

In this part of the course, we delve into the practical applications of Pandas in data manipulation:

  • Data Cleaning and Preprocessing Techniques Using Pandas: This segment covers various methods for preparing your data for analysis, ensuring accuracy and efficiency in your work.
  • Handling Missing Data: Learn how to identify missing values, fill in gaps, or remove incomplete data, which is vital for maintaining the integrity of your analyses.
  • Data Transformation: This includes changing column types, renaming columns, and filtering rows, allowing you to reshape and tailor your data for specific analysis needs.
  • Merging and Joining Datasets in Pandas: You will learn techniques to combine multiple datasets, a common need in complex data analysis projects.
  • Sorting and Indexing Data for Efficient Analysis: The course will show you how to sort and index your data, making your analysis processes more efficient and insightful.

Each section is designed to build upon the previous, providing a structured and comprehensive learning experience in data manipulation using Pandas.

Lessons

01

Pandas - Install Python and Pandas

Start
02

Basic Data Structures in Pandas

Start
03

Loading and Saving Data using Pandas

Start
04

Exploring Data using pandas

Start
05

Correlation Analysis using pandas

Start
06

Handling Categorical Data and Unique Values using pandas

Start
07

Data Visualization using pandas

Start
08

Handling Missing Data in Python

Start
09

Strategies for Handling Missing Data

Start
10

Handling Missing Data - Example - Part 1

Start
11

Handling Missing Data - Example - Part 2

Start
12

Handling Missing Data - Example - Part 3 (Non-numeric Values)

Start
13

Handling Missing Data - Example - Part 4

Start
14

Data Transformation and Feature Engineering

Start
15

Converting Data Types in Python pandas

Start
16

Encoding Categorical Data in Python pandas

Start
17

Handling Date and Time Data in Python pandas

Start
18

Renaming Columns in Python pandas

Start
19

Filtering Rows in a DataFrame in Python

Start
20

Merging and Joining Datasets in Python pandas

Start
21

Sorting and Indexing Data for Efficient Analysis in Python

Start

Master Data & AI for Finance

Get full access to all Data Science, Machine Learning, and AI courses built for finance professionals.

  • Full course library
  • Code & templates
  • Lifetime updates

One-time payment - Lifetime access

Or create a free account to start

Finance Train

Learn data science and AI skills for finance through practical courses and tutorials.

Learn

  • Learning Path
  • Blog
  • Finance Fundamentals

Resources

  • Tools
  • Tables
  • Calculators
  • Membership

Company

  • About
  • Contact
  • Privacy
  • Terms

© 2026 Finance Train. All rights reserved.