- Pandas - Install Python and Pandas
- Basic Data Structures in Pandas
- Loading and Saving Data using Pandas
- Exploring Data using pandas
- Correlation Analysis using pandas
- Handling Categorical Data and Unique Values using pandas
- Data Visualization using pandas
- Handling Missing Data in Python
- Strategies for Handling Missing Data
- Handling Missing Data - Example - Part 1
- Handling Missing Data - Example - Part 2
- Handling Missing Data - Example - Part 3 (Non-numeric Values)
- Handling Missing Data - Example - Part 4
- Data Transformation and Feature Engineering
- Converting Data Types in Python pandas
- Encoding Categorical Data in Python pandas
- Handling Date and Time Data in Python pandas
- Renaming Columns in Python pandas
- Filtering Rows in a DataFrame in Python
- Merging and Joining Datasets in Python pandas
- Sorting and Indexing Data for Efficient Analysis in Python
Encoding Categorical Data in Python pandas
We have three columns with categorical data: LoanStatus, LoanAmountCategory, and CustomerLoyalty. To demonstrate encoding, we will apply it to the LoanStatus column. Since the values in LoanStatus are nominal without any intrinsic order, one-hot encoding is the appropriate technique. It avoids any ordinal implications that label encoding might introduce.
Before we do this, let’s check the various values in this column to ensure that there are no discrepancies. The following code gets us the unique values in LoanStatus column.
# print unique values in LoanStatus column
print(loan_data_cleaned['LoanStatus'].unique())
# ['pending', 'rejected', 'completed', 'approved', 'overdue', 'apprved', 'rejcted']
Categories (7, object): ['approved', 'apprved', 'completed', 'overdue', 'pending', 'rejcted', 'rejected']
We have a problem. Instead of the expected 5 categories, we have 7. This is because we have spelling mistakes in our data. We need to fix this.
To fix the spelling mistakes in the 'LoanStatus' column of our loan_data_copy DataFrame, we can use the .replace() method in Pandas. We want to correct 'apprved' to 'approved' and 'rejcted' to 'rejected'.
# Correcting the spelling mistakes
loan_data_cleaned['LoanStatus'] = loan_data_cleaned['LoanStatus'].replace({'apprved': 'approved', 'rejcted': 'rejected'})
# Verify the changes by printing unique values again
print(loan_data_cleaned['LoanStatus'].unique())
# ['pending', 'rejected', 'completed', 'approved', 'overdue']
Categories (5, object): ['approved', 'completed', 'overdue', 'pending', 'rejected']
Now, we can perform one-hot encoding on the LoanStatus column using pandas:
# Perform one-hot encoding on 'LoanStatus'
loan_status_encoded = pd.get_dummies(loan_data_cleaned['LoanStatus'], prefix='Status')
# Join the encoded DataFrame with the original one, dropping the original 'LoanStatus' column
loan_data_cleaned = loan_data_cleaned.join(loan_status_encoded)
# Optionally, you can drop the original 'LoanStatus' column if you no longer need it
loan_data_cleaned.drop('LoanStatus', axis=1, inplace=True)
# Verify the changes
loan_data_cleaned.head()
Related Downloads
Data Science in Finance: 9-Book Bundle
Master R and Python for financial data science with our comprehensive bundle of 9 ebooks.
What's Included:
- Getting Started with R
- R Programming for Data Science
- Data Visualization with R
- Financial Time Series Analysis with R
- Quantitative Trading Strategies with R
- Derivatives with R
- Credit Risk Modelling With R
- Python for Data Science
- Machine Learning in Finance using Python
Each book includes PDFs, explanations, instructions, data files, and R code for all examples.
Get the Bundle for $39 (Regular $57)Free Guides - Getting Started with R and Python
Enter your name and email address below and we will email you the guides for R programming and Python.