Confidence Interval Estimates

Along with point estimate we may also want to find a range of values within which our population parameter lies with a certain confidence level (1 – α). This is called confidence interval estimate. The α is known as the significance level and the probability (1-α) is known as the degree of confidence or confidence level. An interval estimate provides more information about a population characteristic than does a point estimate.

For example, we can say that the population mean is between 8 and 10 with a 95% confidence. 95% is the degree of confidence and 5% is the level of significance.

Confidence intervals are derived from point estimates using the following general formula:

We will learn about how to calculate the confidence interval for a population mean, given a normal distribution, under three situations:

  • Population variance is known
  • Population variance is not known
  • Population variance is not known and sample size is large

Related Downloads

Data Science in Finance: 9-Book Bundle

Data Science in Finance Book Bundle

Master R and Python for financial data science with our comprehensive bundle of 9 ebooks.

What's Included:

  • Getting Started with R
  • R Programming for Data Science
  • Data Visualization with R
  • Financial Time Series Analysis with R
  • Quantitative Trading Strategies with R
  • Derivatives with R
  • Credit Risk Modelling With R
  • Python for Data Science
  • Machine Learning in Finance using Python

Each book includes PDFs, explanations, instructions, data files, and R code for all examples.

Get the Bundle for $39 (Regular $57)
JOIN 30,000 DATA PROFESSIONALS

Free Guides - Getting Started with R and Python

Enter your name and email address below and we will email you the guides for R programming and Python.

Data Science in Finance: 9-Book Bundle

Data Science in Finance Book Bundle

Master R and Python for financial data science with our comprehensive bundle of 9 ebooks.

What's Included:

  • Getting Started with R
  • R Programming for Data Science
  • Data Visualization with R
  • Financial Time Series Analysis with R
  • Quantitative Trading Strategies with R
  • Derivatives with R
  • Credit Risk Modelling With R
  • Python for Data Science
  • Machine Learning in Finance using Python

Each book comes with PDFs, detailed explanations, step-by-step instructions, data files, and complete downloadable R code for all examples.