Conditional Expected Values

We can use the concept of conditional probabilities to arrive at the conditional expected values. Conditional expected values are conditional based on another event. For example, expected value of a random variable X given scenario S. A practical example would be to find the expected returns from a stock given rising inflation.

The total probability rule can be stated in terms of the expected values as follows:

E(X) = E(X | S1)P(S1) + E(X | S2)P(S2) + … + E(X | Sn)P(Sn)

Where the scenarios S1, S2, …Sn are mutually exclusive and exhaustive.

Example Using Tree Diagram

The following diagram shows the returns from a stock under different inflationary scenarios.

Conditional Expected Value

The diagram shows that the probability of high inflation is 0.70 and the probability of low inflation is 0.30. Given high inflation, the probability of getting a return of 8% is 0.25 and probability of getting a return of 7% is 0.75. Given low inflation, the probability of getting a return of 6% is 0.40 and probability of getting a return of 5% is 0.60.

In the above tree diagram, the values in green are calculated values.

The joint probability of 8% return and high inflation is = 0.25*0.70 = 0.175

The joint probability of 7% return and high inflation is = 0.75*0.70 = 0.525

The joint probability of 6% return and low inflation is = 0.40*0.30 = 0.12

The joint probability of 5% return and low inflation is = 0.60*0.30 = 0.18

The expected return will be calculated as follows:

E(R) = 0.175*8%+0.525*7%+0.12*6%+0.18*5% = 6.695%

You may find these interesting

Value at Risk (VaR)
### Define the concept of Value-at-Risk (VaR) Value-at- Risk (VaR) is a general measure of risk dev...

Related Downloads

Related Quizzes

Probablity Concepts
Finance Train Premium
Accelerate your finance career with cutting-edge data skills.
Join Finance Train Premium for unlimited access to a growing library of ebooks, projects and code examples covering financial modeling, data analysis, data science, machine learning, algorithmic trading strategies, and more applied to real-world finance scenarios.
I WANT TO JOIN
JOIN 30,000 DATA PROFESSIONALS

Free Guides - Getting Started with R and Python

Enter your name and email address below and we will email you the guides for R programming and Python.

Saylient AI Logo

Accelerate your finance career with cutting-edge data skills.

Join Finance Train Premium for unlimited access to a growing library of ebooks, projects and code examples covering financial modeling, data analysis, data science, machine learning, algorithmic trading strategies, and more applied to real-world finance scenarios.