Using GARCH (1,1) Approach to Estimate Volatility
This video provides an introduction to the GARCH approach to estimating volatility, i.e., Generalized AutoRegressive Conditional Heteroskedasticity.
GARCH is a preferred method for finance professionals as it provides a more real-life estimate while predicting parameters such as volatility, prices and returns.
GARCH(1,1) estimates volatility in a similar way to EWMA (i.e., by conditioning on new information) except that it adds a term for mean reversion. It says the series is "sticky" or somewhat persistent to a long-run average.
This video is developed by David from Bionic Turtle.
LESSONS
- How to Calculate Historical Volatility
- Approaches to Estimating Volatility
- Using Excel's Goal Seek Function to Estimate Implied Volatility
- Volatility: Moving Average Approaches
- Volatility: Exponentially Weighted Moving Average (EWMA)
- Using GARCH (1,1) Approach to Estimate Volatility
- How to Forecast Volatility Using GARCH (1,1)
- Calculate Historical Volatility Using EWMA
R Programming Bundle: 25% OFF
Get our R Programming - Data Science for Finance Bundle for just $29 $39.
Get it now for just $29