Quants: Single Variable Linear Regression Analysis

  • This is the “least squares” method.

  • Situational Example:

  • “If a country’s broad stock index (X) appreciates 5%, by how much will the value of that index’s largest air transportation stock change?”

  • You will apply this type of modeling in the equity section, when looking at the CAPM approach to asset valuation.

  • Simple Regression can be expressed as follows:

    Yi = b0 + b1Xi + ei

    • b0 = the y-intercept.  Yi = b0, when observation Xi = 0 (zero)
    • b1 = the slope coefficient – the change in Y per unit change in X.
    • Xi = the observation for the independent variable.  Ex: the value of a stock index.
    • Yi = the observed dependent variable for Xi.
    • ei = the error term or the part of the dependent value not explained by the independent variable; the expected value of the error term is zero and this is one of the standard assumptions for simple regression.
    • Note: the y-intercept and slope coefficient are the known as the model’s parameters.
  • A hat “^” is typically used when referring to predicted values and the subscript “i” typically refers to actual observations.

Six Assumptions of Simple Linear Regression

  1. Y and X must have a liner relationship.
  2. X is not random.
  3. The expected value of e is 0 (zero).
  4. The e term does not exhibit heteroskedasticity, meaning that the error term’s variance is the same for all observations.
  5. The error term is uncorrelated across all observations (or no serial correlation).
  6. The error term has a normal distribution.

A violation of one or more of these assumptions threatens the validity of your model’s conclusions.

You may find these interesting

Single Index Model
The Single Index Model (SIM) is an asset pricing model, according to which the returns on a security...
Finance Train Premium
Accelerate your finance career with cutting-edge data skills.
Join Finance Train Premium for unlimited access to a growing library of ebooks, projects and code examples covering financial modeling, data analysis, data science, machine learning, algorithmic trading strategies, and more applied to real-world finance scenarios.
I WANT TO JOIN
JOIN 30,000 DATA PROFESSIONALS

Free Guides - Getting Started with R and Python

Enter your name and email address below and we will email you the guides for R programming and Python.

Data Science in Finance: 9-Book Bundle

Data Science in Finance Book Bundle

Master R and Python for financial data science with our comprehensive bundle of 9 ebooks.

What's Included:

  • Getting Started with R
  • R Programming for Data Science
  • Data Visualization with R
  • Financial Time Series Analysis with R
  • Quantitative Trading Strategies with R
  • Derivatives with R
  • Credit Risk Modelling With R
  • Python for Data Science
  • Machine Learning in Finance using Python

Each book comes with PDFs, detailed explanations, step-by-step instructions, data files, and complete downloadable R code for all examples.