Lessons

- CFA L2: Quantitative Methods - Introduction
- Quants: Correlation Analysis
- Quants: Single Variable Linear Regression Analysis
- Standard Error of the Estimate or SEE
- Confidence Intervals (CI) for Dependent Variable Prediction
- Coefficient of Determination (R-Squared)
- Analysis of Variance or ANOVA
- Multiple Regression Analysis
- Multiple Regression and Coefficient of Determination (R-Squared)
- Fcalc – the Global Test for Regression Significance
- Regression Analysis and Assumption Violations
- Qualitative and Dummy Variables in Regression Modeling
- Time Series Analysis: Simple and Log-linear Trend Models
- Auto-Regressive (AR) Time Series Models
- Auto-Regressive Models - Random Walks and Unit Roots
- ARMA Models and ARCH Testing
- How to Select the Most Appropriate Time Series Model?

# Qualitative and Dummy Variables in Regression Modeling

- Handle qualitative independent variables with a quantitative proxy or use a dummy variable.
- When using a dummy independent variables (such as assigning a number to the degree of consumer confidence), define a collectively exhaustive set of “j” categories, then j-1 (“j minus one”) will give you the number of dummy variables for inclusion in your model.
- Models with dummy independents can easily be misspecified.

**Model types with qualitative dependent variables**

**Probit models**– based on a normal distribution and attempt to estimate the probability that the dependent variable will equal 1.**Logit models**– based on the logistic distribution and like Probit models, they attempt to estimate the probability that the dependent variable will equal 1.**Discriminant Analysis**– creates a score and if the score crosses a threshold then the dependent variable is assigned a 1.

Looking at the big picture, you want your multiple regression model to:

- Have a good theoretical basis and;
- Pass the most stringent statistical tests (refer back to the sub-section “Assumption Violations”).

Finance Train Premium

Accelerate your finance career with cutting-edge data skills.

Join Finance Train Premium for unlimited access to a growing library of ebooks, projects and code examples covering financial modeling, data analysis, data science, machine learning, algorithmic trading strategies, and more applied to real-world finance scenarios.

I WANT TO JOINJOIN 30,000 DATA PROFESSIONALS

## Free Guides - Getting Started with R and Python

Enter your name and email address below and we will email you the guides for R programming and Python.