Confidence Intervals (CI) for Dependent Variable Prediction

  • In all likelihood, your model will not perfectly predict Y.
  • The SEE can be extended to determine the confidence interval for a predicted Y value.  A common CI to test for a predicted value is 95%.
  • Your regression parameters, the y-intercept (b0) and slope coefficient (b1) will need to be tested for significance before you can generate a confidence interval around your model’s project Y value around an expected X value.
  • H0 = 0 is the null hypothesis when testing either parameter and you will look to reject this in significance, (note: typically the greater emphasis is on the slope coefficient, as b1 value not statistically different from zero indicates no relationship between Y and X).
  • tcalc = the standard script for the output of your significance test on the regression model’s parameters and its absolute value must exceed the designated tcritical on a two tailed significance test.
Learn the skills required to excel in data science and data analytics covering R, Python, machine learning, and AI.

Free Guides - Getting Started with R and Python

Enter your name and email address below and we will email you the guides for R programming and Python.

Saylient AI Logo

Take the Next Step in Your Data Career

Join our membership for lifetime unlimited access to all our data analytics and data science learning content and resources.