Confidence Intervals (CI) for Dependent Variable Prediction

Premium
  • In all likelihood, your model will not perfectly predict Y.
  • The SEE can be extended to determine the confidence interval for a predicted Y value.  A common CI to test for a predicted value is 95%.
  • Your regression parameters, the y-intercept (b0) and slope coefficient (b1) will need to be tested for significance before you can generate a confidence interval around your model’s project Y value around an expected X value.

Unlock Premium Content

Upgrade your account to access the full article, downloads, and exercises.

You'll get access to:

  • Access complete tutorials and examples
  • Download source code and resources
  • Follow along with practical exercises
  • Get in-depth explanations