- Credit Risk Modelling - Case Studies
- Classification vs. Regression Models
- Case Study - German Credit - Steps to Build a Predictive Model
- Import Credit Data Set in R
- German Credit Data : Data Preprocessing and Feature Selection in R
- Credit Modelling: Training and Test Data Sets
- Build the Predictive Model
- Logistic Regression Model in R
- Measure Model Performance in R Using ROCR Package
- Create a Confusion Matrix in R
- Credit Risk Modelling - Case Study- Lending Club Data
- Explore Loan Data in R - Loan Grade and Interest Rate
- Credit Risk Modelling - Required R Packages
- Loan Data - Training and Test Data Sets
- Data Cleaning in R - Part 1
- Data Cleaning in R - Part 2
- Data Cleaning in R - Part 3
- Data Cleaning in R - Part 5
- Remove Dimensions By Fitting Logistic Regression
- Create a Function and Prepare Test Data in R
- Building Credit Risk Model
- Credit Risk - Logistic Regression Model in R
- Support Vector Machine (SVM) Model in R
- Random Forest Model in R
- Extreme Gradient Boosting in R
- Predictive Modelling: Averaging Results from Multiple Models
- Predictive Modelling: Comparing Model Results
- How Insurance Companies Calculate Risk
Credit Risk Modelling - Case Studies
In this tutorial, we will learn credit risk modeling in R using case studies. Specifically, we will use two case studies starting with a simpler one using which we will learn the methodology and important concepts and techniques.
Note: As a pre-requisite, it will be helpful to go through this tutorial first - Foundations of Credit Risk Modelling.
Case Study 1: German Credit
In the first case study, we will use a popular dataset called German Credit. Our objective in this case study is to determine the Probability of Default (PD). We will build a predictive model that takes as input the various aspects of the loan applicant and outputs the probability of default of the loan applicant. PD is one of the most highly used measures for calculating the credit score of the borrowers. PD is also the primary parameter used in calculating credit risk as per the internal ratings-based approach used by banks.
The German Credit dataset contains observations on 21 attributes for 1000 past applicants for credit. Each applicant was rated as “good credit” (700 cases) or “bad credit” (300 cases).
In this case study, we will perform all the steps involved in model building and along the way, we will also understand the entire spectrum of the predictive modeling landscape.
Case Study 2: LendingClub Data
In the second case study, we will build upon the knowledge we have gained in the first case study and apply it to a new data set which is more realistic in nature. We will use the loan data available from LendingClub's website. LendingClub is a US peer-to-peer lending company which matches borrowers with investors willing to fund their loans. The loan dataset contains actual data of the loans extended by them in their business. The dataset is much larger in size compared to the German Credit data and also contains a lot more variables that we need to work on. This case study will give us a more real-life experience of what we can expect when we build a model in our role as a data scientist in a bank.
Related Downloads
Data Science in Finance: 9-Book Bundle
Master R and Python for financial data science with our comprehensive bundle of 9 ebooks.
What's Included:
- Getting Started with R
- R Programming for Data Science
- Data Visualization with R
- Financial Time Series Analysis with R
- Quantitative Trading Strategies with R
- Derivatives with R
- Credit Risk Modelling With R
- Python for Data Science
- Machine Learning in Finance using Python
Each book includes PDFs, explanations, instructions, data files, and R code for all examples.
Get the Bundle for $39 (Regular $57)Free Guides - Getting Started with R and Python
Enter your name and email address below and we will email you the guides for R programming and Python.