Standard Normal Distribution

A normal distribution can be described using just two parameters, namely (μ), mean and variance (σ2).

In a normal distribution, these two variables could take any value. For example, for a normally distributed stock portfolio, the mean could be 10% and the standard deviation could be 20%.

A standard normal distribution is a standardized form of normal distribution with a mean μ = 0 and standard deviation σ = 1.

We can standardize any normal random variable, by computing a z-score for it. z-scores make it easier to compare data values measured on different scales. A z-score reflects how many standard deviations above or below the mean a raw score is. The z-score is positive if the data value lies above the mean and negative if the data value lies below the mean. Z-score is represented using the following formula:

Where x represents the observation, m is the population mean, and s is the standard deviation.

Suppose the dividends paid by a company every year are normally distributed with a mean of $10 and a standard deviation of $2. If the company pays a dividend of $14 this year, what will be its z-score?

A z-score of 2 indicates that the current dividends are 2 standard deviations above the mean.

Related Downloads

Learn the skills required to excel in data science and data analytics covering R, Python, machine learning, and AI.

Free Guides - Getting Started with R and Python

Enter your name and email address below and we will email you the guides for R programming and Python.

Saylient AI Logo

Take the Next Step in Your Data Career

Join our membership for lifetime unlimited access to all our data analytics and data science learning content and resources.