- Major Types of Return Measures
- How to Calculate the Holding Period Returns
- Portfolio Risk & Return - Part 1A - Video
- Portfolio Risk & Return - Part 1B - Video
- Arithmetic Returns Vs. Geometric Returns
- How to Calculate Money-weighted Returns
- How to Calculate Annualized Returns
- How to Calculate Portfolio Returns
- Gross and Net Returns Calculations
- How to Calculate Leveraged Returns
- Nominal Returns and Real Returns in Investments
- Calculate Variance and Standard Deviation of an Asset
- Standard Deviation and Variance of a Portfolio
- Efficient Frontier for a Portfolio of Two Assets
- Effect of Correlation on Diversification
- Risk Aversion of Investors and Portfolio Selection
- Utility Indifference Curves for Risk-averse Investors
- Capital Allocation Line with Two Assets
- Selecting Optimal Portfolio for an Investor
- How to Calculate Portfolio Risk and Return
- Portfolio Risk and Return - Part 2A - Video
- Portfolio Risk and Return - Part 2B - Video

# Standard Deviation and Variance of a Portfolio

We learned about how to calculate the standard deviation of a single asset. Let’s now look at how to calculate the standard deviation of a portfolio with two or more assets.

The returns of the portfolio were simply the weighted average of returns of all assets in the portfolio. However, the calculation of the risk/standard deviation is not the same. While calculating the variance, we also need to consider the covariance between the assets in the portfolio. If the assets are perfectly correlated, then the simple weighted average of variances will work. However, when we have to account for the covariance, the equation will change.

**Covariance** reflects the degree to which two securities vary or change together, and is represented as Cov (Ri,Rj). The problem with covariance is that it has no units, and is difficult to compare across assets. Using covariance, we can calculate the correlation between the assets using the following formula:

Correlation

After incorporating covariance, the standard deviation of a two-asset portfolio can be calculated as follows:

Standard Deviation of a two Asset Portfolio

In general as the correlation reduces, the risk of the portfolio reduces due to the diversification benefits. Two assets a perfectly negatively correlated provide the maximum diversification benefit and hence minimize the risk.

Let’s take an example to understand the calculation. Assume we have a portfolio with the following details:

Example

The standard deviation can be calculated as follows:

This portfolio has an expected return of 16.80% and portfolio risk of 11.09%.

### You may find these interesting

#### Related Downloads

## Free Guides - Getting Started with R and Python

Enter your name and email address below and we will email you the guides for R programming and Python.