H = nS - c
H = The value of the hedged portfolio
n = Hedge ratio
S = Price of the underlying asset
c = Call price
A hedged portfolio will be "riskless" in that there is a perfect balance between a long position in the underlying and a short position in the call, so the gain in one offsets the loss to the other.
n = (c+ - c-)/(S+ - S-)
c+ = The price of the call when the underlying rises to S+
c- = The price of the call with the underlying falls to S-
Note that these values are "intrinsic" values (difference between the underlying's future price and the option's strike price). For example, if the strike price is $25/share and the upside is $30/share, then c+ is $5.
S+ = The upside price of the underlying asset
S- = The downside price of the underlying asset
Upside and downside for the underlying must be converted to 1 + the % price move
u = (S+/S)
d = (S-/S)
S = Starting price for the underlying
Because the hedged portfolio is a risk free portfolio, the rate of return on the hedged portfolio should equal the risk free rate.
The one period model can be expanded to multiple periods.