Statistical Foundations: Predicting Volatility

Following are the major steps we take to estimate volatility, using the S&P 500 Index:

  • Let's look at historical market rates. We start by converting daily prices into log changes. (Daily log changes are conceptually similar to percentage returns, except they are continuously compounded.)

  • Our goal is to use past returns to predict the volatility of future returns. We can plot changes in market rates onto a histogram and fit a normal distribution. You can see here that the normal distribution is a reasonable but not perfect fit for stock returns. We expect this distribution of returns to stay reasonably stable over time. However, every day we re-estimate the standard deviation of the distribution to predict tomorrow's volatility (hence our predicted distribution of returns changes each day).

  • By re-estimating volatilities every day, we can get a dynamic estimate of risk. Observe the dynamic nature of risk--several periods of high and low volatility. We expect approximately 5% excessions on both the upside and the downside. Actual daily excessions over this 5-year period were approximately 6% on the upside and 4% on the downside.

Data Science in Finance: 9-Book Bundle

Data Science in Finance Book Bundle

Master R and Python for financial data science with our comprehensive bundle of 9 ebooks.

What's Included:

  • Getting Started with R
  • R Programming for Data Science
  • Data Visualization with R
  • Financial Time Series Analysis with R
  • Quantitative Trading Strategies with R
  • Derivatives with R
  • Credit Risk Modelling With R
  • Python for Data Science
  • Machine Learning in Finance using Python

Each book includes PDFs, explanations, instructions, data files, and R code for all examples.

Get the Bundle for $39 (Regular $57)
JOIN 30,000 DATA PROFESSIONALS

Free Guides - Getting Started with R and Python

Enter your name and email address below and we will email you the guides for R programming and Python.

Data Science in Finance: 9-Book Bundle

Data Science in Finance Book Bundle

Master R and Python for financial data science with our comprehensive bundle of 9 ebooks.

What's Included:

  • Getting Started with R
  • R Programming for Data Science
  • Data Visualization with R
  • Financial Time Series Analysis with R
  • Quantitative Trading Strategies with R
  • Derivatives with R
  • Credit Risk Modelling With R
  • Python for Data Science
  • Machine Learning in Finance using Python

Each book comes with PDFs, detailed explanations, step-by-step instructions, data files, and complete downloadable R code for all examples.