# Standard Error in Linear Regression

A simple (two-variable) regression has three standard errors: one for each coefficient (slope, intercept) and one for the predicted Y (standard error of regression).

While the population regression function (PRF) is singular, sample regression functions (SRF) are plural. Each sample produces a different SRF. So, the coefficients exhibit dispersion (sampling distribution). The standard error is the measure of this dispersion: it is the standard deviation of the coefficient.

In this video, David from Bionic Turtle talks about the standard error in linear regression.

## Data Science in Finance: 9-Book Bundle

Master R and Python for financial data science with our comprehensive bundle of 9 ebooks.

### What's Included:

- Getting Started with R
- R Programming for Data Science
- Data Visualization with R
- Financial Time Series Analysis with R
- Quantitative Trading Strategies with R
- Derivatives with R
- Credit Risk Modelling With R
- Python for Data Science
- Machine Learning in Finance using Python

Each book includes PDFs, explanations, instructions, data files, and R code for all examples.

Get the Bundle for $39 (Regular $57)## Free Guides - Getting Started with R and Python

Enter your name and email address below and we will email you the guides for R programming and Python.