• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Finance Train

Finance Train

High Quality tutorials for finance, risk, data science

  • Home
  • Data Science
  • CFA® Exam
  • PRM Exam
  • Tutorials
  • Careers
  • Products
  • Login

Quantitative Trading – Advantages and Disadvantages

Data Science, Quantitative Finance

This lesson is part 2 of 21 in the course Quantitative Trading Strategies in R

Advantages

Quantitative trading has many advantages over the discretionary approach of trading. 

  • The performance of a quantitative strategy can be tested with historical market data. This process is known as backtesting where we test the strategy using historical data to help us determine if the strategy is likely to be profitable in the future. 
  • The automation of the strategy is more efficient as there is no need for an individual or a team to constantly monitor market prices or news. 
  • Traders and investors have gained more computational power to perform tasks that require high volumes of data and also allow them to have more accurate calculations of position sizes and risk management.
  • This computation power allows execution of certain types of strategies that would be impossible for humans to execute by themselves such as high-frequency trading strategies that triggers orders in less than one second using order book information. 
  • All these things are not possible in a discretionary world where traders are unable to continuously compute risk and monitor the market. 
  • The quantitative approach to trading also gets rid of emotions that can alter the course of transactions.

Disadvantages

Despite these advantages, the quantitative approach to trading also has some drawbacks. 

  • The main constraint of quantitative trading is that it generally requires a far larger capital base than what is utilized in retail discretionary trading. 
  • Another drawback is that there are many datasets that are expensive for the retail trader. Specifically intraday data feeds are costly. 
  • In the cryptocurrency market, there are traders and algorithmic trading firms which locate servers in the same cloud, and using the same domain as the exchange. This practice allows them to send orders and match the exchange engine much faster than traditional traders. This also increases costs.

In the last few years, the quantitative trading field has grown significantly and there are many tools and open source platforms that allow the retail traders to build and backtest their quantitative strategies.  

Previous Lesson

‹ Introduction to Quantitative Trading

Next Lesson

Types of Quantitative Trading Strategies ›

Join Our Facebook Group - Finance, Risk and Data Science

Posts You May Like

How to Improve your Financial Health

CFA® Exam Overview and Guidelines (Updated for 2021)

Changing Themes (Look and Feel) in ggplot2 in R

Coordinates in ggplot2 in R

Facets for ggplot2 Charts in R (Faceting Layer)

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

In this Course

  • Introduction to Quantitative Trading
  • Quantitative Trading – Advantages and Disadvantages
  • Types of Quantitative Trading Strategies
  • Momentum Strategies
  • Mean Reversion Strategies
  • Market Making Strategies and Day Trading Strategies
  • How to Generate Trading Ideas
  • Designing A Trading Strategy For Profit
  • Backtesting a Trading Strategy – Considerations
  • Risk Management of a Trading Strategy
  • Risk Indicators – VIX Index and TED Spread
  • Plotting the VIX Index and TED Spread in R
  • Introduction to Quantmod in R
  • Downloading Data Using Quantmod Package in R
  • Creating Charts with Quantmod
  • Data Analysis with Quantmod in R
  • Measuring Overall ETFs Performance
  • Quantstrat Example in R – EMA Crossover Strategy
  • Quantstrat – EMA Crossover Strategy – Performance and Risk Metrics
  • Quantstrat Example in R – RSI Strategy
  • Quantstrat Case Study – Multiple Symbol Portfolio

Latest Tutorials

    • Data Visualization with R
    • Derivatives with R
    • Machine Learning in Finance Using Python
    • Credit Risk Modelling in R
    • Quantitative Trading Strategies in R
    • Financial Time Series Analysis in R
    • VaR Mapping
    • Option Valuation
    • Financial Reporting Standards
    • Fraud
Facebook Group

Membership

Unlock full access to Finance Train and see the entire library of member-only content and resources.

Subscribe

Footer

Recent Posts

  • How to Improve your Financial Health
  • CFA® Exam Overview and Guidelines (Updated for 2021)
  • Changing Themes (Look and Feel) in ggplot2 in R
  • Coordinates in ggplot2 in R
  • Facets for ggplot2 Charts in R (Faceting Layer)

Products

  • Level I Authority for CFA® Exam
  • CFA Level I Practice Questions
  • CFA Level I Mock Exam
  • Level II Question Bank for CFA® Exam
  • PRM Exam 1 Practice Question Bank
  • All Products

Quick Links

  • Privacy Policy
  • Contact Us

CFA Institute does not endorse, promote or warrant the accuracy or quality of Finance Train. CFA® and Chartered Financial Analyst® are registered trademarks owned by CFA Institute.

Copyright © 2021 Finance Train. All rights reserved.

  • About Us
  • Privacy Policy
  • Contact Us