• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Finance Train

Finance Train

High Quality tutorials for finance, risk, data science

  • Home
  • Data Science
  • CFA® Exam
  • PRM Exam
  • Tutorials
  • Careers
  • Products
  • Login

Momentum Strategies

Data Science, Quantitative Finance

This lesson is part 4 of 21 in the course Quantitative Trading Strategies in R

Even though we classify momentum with a longer time frame than a day, it is necessary to point out that momentum can also exist within the day. Traders can find momentum during the day, as well as for longer time frames. The strategies that we analyze below have long-time horizon momentum.

A momentum strategy is based on identifying and following a price trend in the market. It is based on the premise that an asset price that is moving strongly in a direction will continue to move in that direction until the price trend loses strength. The momentum is determined based on the trading volume and rate of price change. Momentum can be classified into time-series momentum and cross-sectional momentum. 

Time-series Momentum

Time series momentum means that past returns are correlated with future returns.

In order to design a time-series momentum strategy, researchers calculate the correlation coefficient of the returns using a statistical approach, where the null hypothesis represents no correlation between returns. 

The correlation coefficient of returns can vary across lags and sometimes the most positive correlation is between returns of different lags. For example, we can find that the correlation coefficient of returns in one day is negative, and the correlation coefficient of returns in a twenty day window is positive. So, while using this approach, it is necessary to take into account the different timeframes of the returns correlations. 

Cross-sectional Momentum

Cross-sectional momentum is based on the relative performance of two prices series, where one price series outperforms the other. The hypothesis in this type of strategy support is that if one price series outperforms the other in the present, it is likely to keep doing so in the future.

Working with Momentum Strategies

Momentum strategies can be based on technical indicators and breakouts. For example, it is possible to define an entry signal to buy when the price reaches a new N-day high, or when the price exceeds the upper Bollinger band, or when the price exceeds the N-day Moving Average or Exponential Moving Average. 

Relative Strength Index (RSI) and Moving Average Convergence Divergence (MACD) are typical indicators used to find signals of oversold and overbought stocks that could lead to entry orders to go long or short.

Other classical momentum strategies generate signals to buy when the number of up days exceeds the number of down days in a moving period. A sophisticated approach would buy or sell the stock prior to the big movement by detecting chart patterns as well as resistance and support levels and make entries prior to the big move.

These types of strategies many times are supported by pipelines or screeners in order to find stocks that meet some criteria. For example, one pipeline could select stocks that are within 10% of their 52-week high and rank them from highest to lowest to this high. After getting this group of stocks, traders may wait for a pull back to enter into the market.

Risks

Momentum strategies involve a high level of risk because there is no guarantee that the price will continue to go higher in case of an uptrend or continue to go down in case of a downtrend. Statistics show that the number of winning trades in a momentum strategy are few compared to the number of losing trades. However, these types of strategies have a high reward/risk rate. So, a few winning trades can make the strategy profitable despite the big number of losing trades.

For this reason, these types of strategies require an integral trading plan with a strict definition of entry and exit points and knowledge about the current market regime. Usually traders set stop loss orders to exit position to prevent a big loss when the trend has a reversal and start to move in the opposite direction.

Profitability

The strategy metrics of a momentum strategy will differ from those of other types of strategies such as a mean reversion strategy. Usually in a momentum strategy, the ratio of winning trades over losing trades is lower than 1 as there are more losing trades than winning trades.  Momentum strategies, therefore,  rely on a small number of winning trades with a greater profit. In contrast, the number of winning trades for a mean reversion strategy is higher than the number of losing trades. Mean reversal strategies are profitable based on the amount of winning trades and not the reward/risk relation of each trade.

Previous Lesson

‹ Types of Quantitative Trading Strategies

Next Lesson

Mean Reversion Strategies ›

Join Our Facebook Group - Finance, Risk and Data Science

Posts You May Like

How to Improve your Financial Health

CFA® Exam Overview and Guidelines (Updated for 2021)

Changing Themes (Look and Feel) in ggplot2 in R

Coordinates in ggplot2 in R

Facets for ggplot2 Charts in R (Faceting Layer)

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

In this Course

  • Introduction to Quantitative Trading
  • Quantitative Trading – Advantages and Disadvantages
  • Types of Quantitative Trading Strategies
  • Momentum Strategies
  • Mean Reversion Strategies
  • Market Making Strategies and Day Trading Strategies
  • How to Generate Trading Ideas
  • Designing A Trading Strategy For Profit
  • Backtesting a Trading Strategy – Considerations
  • Risk Management of a Trading Strategy
  • Risk Indicators – VIX Index and TED Spread
  • Plotting the VIX Index and TED Spread in R
  • Introduction to Quantmod in R
  • Downloading Data Using Quantmod Package in R
  • Creating Charts with Quantmod
  • Data Analysis with Quantmod in R
  • Measuring Overall ETFs Performance
  • Quantstrat Example in R – EMA Crossover Strategy
  • Quantstrat – EMA Crossover Strategy – Performance and Risk Metrics
  • Quantstrat Example in R – RSI Strategy
  • Quantstrat Case Study – Multiple Symbol Portfolio

Latest Tutorials

    • Data Visualization with R
    • Derivatives with R
    • Machine Learning in Finance Using Python
    • Credit Risk Modelling in R
    • Quantitative Trading Strategies in R
    • Financial Time Series Analysis in R
    • VaR Mapping
    • Option Valuation
    • Financial Reporting Standards
    • Fraud
Facebook Group

Membership

Unlock full access to Finance Train and see the entire library of member-only content and resources.

Subscribe

Footer

Recent Posts

  • How to Improve your Financial Health
  • CFA® Exam Overview and Guidelines (Updated for 2021)
  • Changing Themes (Look and Feel) in ggplot2 in R
  • Coordinates in ggplot2 in R
  • Facets for ggplot2 Charts in R (Faceting Layer)

Products

  • Level I Authority for CFA® Exam
  • CFA Level I Practice Questions
  • CFA Level I Mock Exam
  • Level II Question Bank for CFA® Exam
  • PRM Exam 1 Practice Question Bank
  • All Products

Quick Links

  • Privacy Policy
  • Contact Us

CFA Institute does not endorse, promote or warrant the accuracy or quality of Finance Train. CFA® and Chartered Financial Analyst® are registered trademarks owned by CFA Institute.

Copyright © 2021 Finance Train. All rights reserved.

  • About Us
  • Privacy Policy
  • Contact Us