- CFA Level 2: Portfolio Management – Introduction
- Mean-Variance Analysis Assumptions
- Expected Return and Variance for a Two Asset Portfolio
- The Minimum Variance Frontier & Efficient Frontier
- Diversification Benefits
- The Capital Allocation Line – Introducing the Risk-free Asset
- The Capital Market Line
- CAPM & the SML
- Adding an Asset to a Portfolio – Improving the Minimum Variance Frontier
- The Market Model for a Security’s Returns
- Adjusted and Unadjusted Beta
- Multifactor Models
- Arbitrage Portfolio Theory (APT) – A Multifactor Macroeconomic Model
- Risk Factors and Tracking Portfolios
- Markowitz, MPT, and Market Efficiency
- International Capital Market Integration
- Domestic CAPM and Extended CAPM
- Changes in Real Exchange Rates
- International CAPM (ICAPM) - Beyond Extended CAPM
- Measuring Currency Exposure
- Company Stock Value Responses to Changes in Real Exchange Rates
- ICAPM vs. Domestic CAPM
- The J-Curve – Impact of Exchange Rate Changes on National Economies
- Moving Exchange Rates and Equity Markets
- Impacts of Market Segmentation on ICAPM
- Justifying Active Portfolio Management
- The Treynor-Black Model
- Portfolio Management Process
- The Investor Policy Statement
Justifying Active Portfolio Management
- Two arguments can be used to justify active portfolio management for investors:
- Given that the mispricing of securities takes place from time to time (2007 would have been a great time to short U.S. mortgage backed securities), highly skilled active managers can exploit mispricings to generate excess returns.
- Even with a passive strategy, an allocation decision must be made between the risk free asset (such as government debt) and a portfolio comprised of risky assets.
Forecasts for risks and returns must be made in order to design the individual investor's optimal portfolio.
Successful limited active management can be highly beneficial for investors as periodic allocation weighting adjustments can facilitate higher returns during economic expansion and mitigate losses during economic contraction.
Data Science in Finance: 9-Book Bundle
Master R and Python for financial data science with our comprehensive bundle of 9 ebooks.
What's Included:
- Getting Started with R
- R Programming for Data Science
- Data Visualization with R
- Financial Time Series Analysis with R
- Quantitative Trading Strategies with R
- Derivatives with R
- Credit Risk Modelling With R
- Python for Data Science
- Machine Learning in Finance using Python
Each book includes PDFs, explanations, instructions, data files, and R code for all examples.
Get the Bundle for $39 (Regular $57)Free Guides - Getting Started with R and Python
Enter your name and email address below and we will email you the guides for R programming and Python.