Correlation and Covariance
Both correlation and covariance are an indicator of the relationship between two variables. They indicate whether the variables are positively or negatively related.
The correlation also indicates the degree to which the two variables are related. It's a translation of covariance into a unit-less measure that we can understand (-1.0 to 1.0). The correlation of the variable with itself is always 1.
This video takes an example to explain the two concepts:
This video is developed by David from Bionic Turtle.
Data Science in Finance: 9-Book Bundle
Master R and Python for financial data science with our comprehensive bundle of 9 ebooks.
What's Included:
- Getting Started with R
- R Programming for Data Science
- Data Visualization with R
- Financial Time Series Analysis with R
- Quantitative Trading Strategies with R
- Derivatives with R
- Credit Risk Modelling With R
- Python for Data Science
- Machine Learning in Finance using Python
Each book includes PDFs, explanations, instructions, data files, and R code for all examples.
Get the Bundle for $29 (Regular $57)Free Guides - Getting Started with R and Python
Enter your name and email address below and we will email you the guides for R programming and Python.